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Mira Geoscience offers software and consulting services for the mining industry. Our focus
is on 3D and 4D data management, earth modelling and analysis solutions for mineral
exploration and geotechnical hazard assessment.




Geohazard

hazard (x, vy, z, t) = f (rock quality, geometry, stress, seismicity, deformation, ...)

Our premise is a simple one, and it’s proven effective over many years of consulting
projects in a wide variety of mining types (open pit, underground, hard rock, soft rock) and
hazard types (e.g. rockburst, strain burst, roof fall, slope failure, flood).

We model hazard as a 4D function of time and space on the rock interface where the
hazards are experienced. In a case like that shown in the photograph, we would model
hazards along the drift, with the probabilistic hazard assessment computed as a function of
numerous, quantitative hazard criteria in various classes — geological, rock mass quality,
stress, seismicity, and others. We typically work with a couple of dozen candidate hazard
criteria, which are modelled throughout the mine. Some evolve with time; some do not.

We use “predictive analytics” methods to examine the history of the state of the mine over
time, compare it to the history of geohazards such as rockbursts, and to rigorously explore
the relationships in order to define the data-driven hazard equation.



Geophysical contributions

Site characterization Monitoring
« 2D/3D geophysical surveys » LiDAR / laser scanning
+ wireline logging * laser prisms

* scanning radar

* InSAR

+ time-lapse geophysical surveys
* passive seismic monitoring

Geophysics offers several data types that contribute to hazard assessment. They come in
two major categories: geophysics for static (non-time dependent) site characterization and
geophysics for time-dependent monitoring. Geophysics for site characterization is similar to
the array of techniques used in mineral exploration. Geophysics for site monitoring,
however, is different. Monitoring usually means deformation monitoring, time-lapse
seismic or other geophysical surveys to image changes in structure or physical properties,
or passive seismic monitoring with microseismic arrays.



The approach

» capture the 4D historical state of the mine
» capture the historical record of geohazards
* analyze and understand the 4D relationship between data and geohazard

» use the analysis to forecast the likelihood of geohazard events for any
future mine state

» establish a system to automatically update the state of the mine and the
geohazard forecast

The approach we have refined over the years is to understand the history of mining
geohazard occurrence in terms of the state of the mine as expressed through numerous
observed or modelled variables. We analyze the correlations between hazard event
occurrence and the state of numerous variables using statistics or machine learning. This
enables us to forecast hazard by recognizing patterns in data that have been previously
associated with hazards. We encapsulate those relationships in a set of “rules” that can
automatically be applied to future states as the mine evolves.



The workflow

* problem definition

» feature engineering
+ data fusion

* analysis

* deployment

We have defined a workflow that enables to follow the same approach for any mine type
and any hazard type.



The workflow

» problem definition ——| < hazard type (rockburst, slope failure, etc.)
» feature engineering * general hazard criteria and data sources

» data fusion l

structure, rock type, rock quality,
stiffness, stress, blasting, mine geometry,
* deployment production rate, sequencing, seismicity,
deformation, slope angle, face angle,
berm width, water

« analysis

The first step is to understand the specific hazard(s) that are to be modelled, the sources of
data available, and the general classes of variables that are believed to have potential
correlation to the hazard. | have highlighted geophysical contributions to input data types in
red.



Problem definition

* never mix hazard types in the analysis
* brainstorm with site personnel
+ use statistical tools to validate

« anticipate revision during project

Because we are correlating specific hazards with data, it is critical that each hazard type be
treated as a separate problem. Beliefs by site personnel are generally refined over the
course of a project as relationships between hazard occurrence and data are revealed
through analysis.



The workflow

» problem definition * mapping data sources to hazard criteria

» feature engineering—— l

geological and geotechnical block models,
geological wireframes, drillhole databases,
« analysis mine development wireframes, seismicity,

ground deformation data, blasting records,
production records, structural data

» data fusion

* deployment

“Feature engineering” is a term borrowed from machine learning. It refers to the
assignment or creation of the individual variables derived from available data sets for
correlation to the target variable. In our case the target variable is hazard occurrence.



Feature engineering

* hazard criteria are
independently modelled

+ digitization interval is a

. [ J
compromise between o0 ®
. e 2
resolution and problem YT T
size o®
rock type
» each criteria class may seismicity
yield many features deformation
support

extraction ratio

rock mass rating
proximity to structure
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An important step is bring all the required hazard criteria onto the same support, with the
values co-located in space and time. The co-location process is a complex one for many of
the important criteria (although trivially simple for some others), and has been a significant
part of our previous R&D, which now routinely and efficiently employ in a great variety of
mining situations. It corresponds to what the analytics community call “feature extraction”
or “data fusion”.

In practice, it means estimating a value for each of the criteria along the mine workings
where the hazards are being assessed, typically spaced every few metres. When deployed
in automated mode with Geoscience INTEGRATOR, the hazard criteria values are
automatically updated as new data becomes available.

We digitize the mine model at locations where we want to model hazard. Each of the
variables, or “features” to use the machine learning jargon, to be tested for correlation to
the target variable is assigned to the appropriate point. The red dots in this image
represent digitized points on a mine model with mine model points established along the
drift centrelines at a spacing of a few metres. Some variable are time-dependent. This is
handled by capturing the state of the mine model as a series of dates on which a hazard
event was experienced, effectively capturing the 4D nature of the problem. A couple of
variable types arising from geophysical data are highlighted in red.



Feature engineering

At the end of the day, some machine learning projects succeed and some
fail. What makes the difference? Easily the most important factor is the
features used. If you have many independent features that each correlate
well with the class, learning is easy. On the other hand, if the class is a

very complex function of the features, you may not be able to learn it.

Domingos (2015), A few useful things to know about machine learning,
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

The field of predictive analytics, or machine learning, has seen a tremendous amount of
progress in the past several years, where it is now ubiquitous in marketing, finance, and
some scientific fields such as genetics. It is underutilized in mining but, as you can see from
the definition, it provides a general description that exactly fits the geohazard assessment
problem.
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Feature engineering

microseismic event density

Some examples of the modelling that must be done to transform raw data to variables
represented on the digitized mine model. This modelling process, the feature engineering,
is the most time-consuming part of any project.

Here is an example of hazard criteria estimation, in this case from a South African gold
mine. The hazard criteria is proximity to the edge of a volume containing an unusually high
microseismic event density over a given time window.

You can see the distance to the edge of the blue volume has been computed everywhere in
3D space, from which it is projected onto the mine workings.

Such hazard criteria can be defined on a per-site basis with whatever level of complexity is
required, and automatically computed and updated as new data arrive.
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Feature engineering

stress

Another example is deviatoric stress, which is the property shown on the 2D section. It is
computed everywhere in 3D and projected onto the mine workings.

(The vectors are the principal stress direction, extracted from a 3DEC model.)



Feature engineering

extraction ratio

Another example is excavation ratio, a variable that is typically an important hazard criteria,
in part because it is often a local proxy for stress.

We compute excavation ratio as the volume of excavated versus intact material within a
sphere of a given radius. In this picture we are showing excavation ration estimated on the
each vertex of a wireframe. The computation is done automatically.
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Feature engineering

Hazard criteria category

Example candidate hazard criteria

Mine development

Rock mass

Geology and structure

Stress

Seismicity

Monitoring

Age of development, development rate, ground support
category, age of support, span, orientation, proximity to
intersections, depth.

Joint orientation, joint spacing, uniaxial compressive
strength, fracture frequency, rock mass rating, rock quality
designation.

Rock type, proximity to contacts, proximity to waste gaps
between ore zones, proximity to major structures, proximity
to structural intersections, orientation of major structures,
fault category, proximity to dykes.

Maximum principal stress, deviatoric stress, excavation ratio
(as a local stress proxy), fault slip tendency.

Seismic event density, proximity to seismic cluster, local
magnitude, E;/E; ratio, static stress drop, seismic moment,
energy index.

Deformation from extensometers, convergence stations.

Some typical variables used in study of rockburst hazard in underground mines.
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The workflow

» problem definition » establish list of historical hazards
» feature engineering » create mine model snapshots
» data fusion —| < create data fusion table combining hazard

, criteria and hazard occurrences
« analysis

* deployment

The time-stepped mine model must be converted to a form amenable for statistical or
machine learning analysis.



Data fusion
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The analytics is carried out on the mine model points. Each point—the red dots in the
image—correspond to a specific (x, y, z, date-time) in the mine, with a list of hazard criteria
values corresponding to that point in space and time. If a hazard, such as a rockburst,
occurred at or near that point in space or time, it is flagged in the mine model data
structure.



Data fusion
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The first task in applying data-driven analysis is to construct a table of observations, in this
case each observation corresponding to a position in the mine at a certain time. The rows
of the table correspond to individual (x, y, z, t) observations—the red points shown in the
previous image—while the columns correspond to the hazard criteria estimated at those
positions and times. In the mining geohazard case, this table usually contains a few dozen
columns and several million rows, with new rows being added at every time step.

We add an additional column called “hazard”, which is a label applied to that row
depending on whether or not the hazard being assessed occurred at that time and place. In
the image, we use an “X” to indicate the hazard (e.g. a rockburst) occurred, and an “O” to
indicate it did not occur. So the last column is a binary variable.

The goal of any predictive analytics or machine learning algorithm is to understand
realtionships amongst the column variables and the hazard variable, with the objective of
being able to forecast the probability of any new possible row being associated with the
hazard or not.
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Data fusion

O

Our Geoscience INTEGRATOR software system automatically carries out data fusion
operations as new data are acquired.
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This screen shot shows part of a data fusion table as seen in Geoscience INTEGRATOR’s
web interface.
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The workflow

» problem definition
» feature engineering

» data fusion o ,
« statistical analysis

« analysis — , ,
* machine learning

* deployment

Once the data fusion table is created, we search for associations between the modelled
variables and hazard using statistical analysis or machine learning.



Analysis
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The data fusion table in practice is typically represented as a large (a few 10s of columns
and hundreds of thousands to a few million rows) csv file. Column files such as this are
standard inputs to a wide variety of general statistical and machine learning tools.
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Analysis
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This plot illustrates the general approach of the machine learning algorithms we employ.
The X’s and O’s from the data fusion table are investigated in the multi-variate hazard
criteria space (two of many hazard criteria dimensions being shown in the figure for
simplicity) for areas of “over-concentration” of X’s. Or to put it another way, what
combinations of hazard criteria values, such as local fault-slip tendency and proximity to
structure, have historically been associated with the occurrence of hazards such as
rockbursts? Searching for such tell-tale associations in high-dimensional spaces (each
hazard criteria being a dimension) cannot be readily identified with traditional statistical,
visual, or observational approaches. However, machine learning algorithms can effectively
comb through the multi-dimensional space using brute-force searches to discover
relationships otherwise easily missed.

The associations of variables where hazards tend to be occur are captured by the system as
“rules”. The rules are the criteria-value bounds defining the multi-dimensional boxes shown
by example in this two-dimensional plot. Output rules are directly interpretable by domain
experts.
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Analysis

Rule# 7

Criteria Bounds
3 blastDensity 0.004665 0.706523
13 distance_to_CuOre 1.672783 80.19519
15 distance_to_drift_intersections 5.160544 13.90811
6 dip_joints_dip_dir_175_185 43.21336 73.20842
10 distance_to_all_fault_intersections 58.96496 311.2795
17 distance_to_high_fault_slip 11.67736 144.8638
FOG# 647915111
Rule# 44

Criteria Bounds
20 distance_to_NiOre 143.2019 186.1528
25 LocalMag -2.75641 -2.6935
24 EsEp_logl0 0.692114 0.784783
14 distance_to_dikes 7.413339 77.79344
10 distance_to_all_fault_intersections 14.61875 108.2473
FOG# 13175

Rules output from machine learning can be inspected, interpreted, and validated. This
process is called “rule mining”.



The workflow

» problem definition * bringing it all together on the minesite
» feature engineering
+ data fusion

« analysis

* deployment —_—

This is what it a deployed system looks like in its general design configuration — data input
from multiple projects or mines into a structured system, making data and results available
to all stakeholders, wherever they may be. Input of data from continuous monitoring
systems is automated through monitored folders on the network file system or customized
connections to site databases.



Deployment

3rd Party
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Access 3D Visualization
Machine Learning

We have created a secure system which serves three main objectives:

1) Organization of multiple streams of data in a structured system, making that data
available for all stakeholders, and structuring it for the geohazard assessment and other
business problems requiring integrated interpretation.

2) Providing customized, ad-hoc access, reporting, and visualization of multiple data types
from a secure, multi-user, easy-to-use interface.

3) Performing geohazard assessment in quasi-real time.



Deployment

* rock sample data

* geophysical data

* geochemistry and mineralogy
* physical rock properties
 drillholes

* observations points

* geological models

* maps and level plans

* image and other data files

« documents

ground deformation
microseismic

stress

incidents

blasting

fixed-plant equipment
mobile equipment
mine geometry
time-dependent mine model
gas emission
ventilation

ground support

Data formats are free-form, using user-established templates containing any number of
fields. Data may be integer, float, binary, classification, alphanumeric, or date/time. Time
variance is supported on all data types for which it makes sense. QA/QC is automated on
input according to user-defined rules.



6 hazard report
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3 updated mine model

5 ML rules

4 data fUSIOﬂ table 3D spatial modelling

engine on server
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This slide shows the data flow on the server. It is completely automated, with GOCAD
running as run-time spatial computation engine on the server (without the GOCAD user
interface). There is no need for users to learn complex modelling software.
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3D visual query interface

A powerful 3D visualizer is provided with an ability to query the server, and download only
those files, documents, data set summaries, or data requested. Data are shown in linked
graphical, tabular, and histogram displays.

28



3D visual query interface

A powerful 3D visualizer is provided with an ability to query the server, and download only
those files, documents, data set summaries, or data requested. Data are shown in linked
graphical, tabular, and histogram displays.
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Data fusion

>

The mine model can also be conveniently viewed through the web browser, in this case

showing a digitized pit shell.

© 2018 Mira Geoscience

RMR

rock type

deformation (prism, radar)
planar failure probability
wedge failure probability
proximity to structure

face slope

berm width

etc...
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Individual hazard criteria values, or the hazard probability forecast itself, can be displayed
on selected mine levels in the web browser as well as in the 3D visualizer.
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This slide shows the part of the Ul where the automated hazard criteria computation is
controlled. “System-computed properties” are updated on a defined schedule or on
demand. The “Category” column corresponds to the class of function automatically run on
the on-board GOCAD run-time engine within Geoscience INTEGRATOR.
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The definition of the hazard formulation “rules”, threshold trigger alert levels, and
calculation schedule is controlled in this interface.
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Geohazard

hazard (x, vy, z, t) = f (geology, rock quality, geometry, structure, deformation, ...)

So, in summary, we have developed a workflow through which the geotechnical hazard
assessment equation can be shifted from qualitative and knowledge-driven to quantitative
and data-driven. Geophysical data is often a critical component in the solution. We believe
it is a significant achievement.
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