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Outline

= Distributed Fiber-optic Sensing Concept
» Deployment Considerations

= Infrastructure Monitoring
= Near-surface
= Earthquake

» Landslides, slopes and geohazards
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The Key Ingredients

Converting a fiber optic cable into a measurement device

Standard commercial off the shelf cable— Interrogator: Laser, optical and electronic
up to 50 km (30 miles) components
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DAS Sensing on Infrastructure Fibers
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The DAS Measurement Principle

= Uses laser light pulses and the “Rayleigh scattering”
effect to measure axial strains in the fiber

= Regular fiber optic cable turns into an array of
acoustic sensors

Rayleigh scattering
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DAS: Coherent Rayleigh Backscatter Effects
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(Magnitude of the Strain signal)
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A Distributed Fiber-optic System

Deployment Options

Rugged Field Cases
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Distributed Sensors

10000’s of sensors

Gauge length | I | I |

Fiber T T

Distributed Sensor Locations

Sense compression (extension)
between end points of gauge
resulting in a strain
measurement.

Measure strain components
inline with fiber.

Point Sensors

100’s of sensors

. S S S

Point Sensor Locations

Sense at a single point
RS particle velocity or
RN acceleration.

Thel Measure particle velocity /
accelerations direction
vector.

Reception characteristic is different between a DAS
fiber sensor and a geophone/accelerometer.

Measurements can be converted from one to the other.
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‘DAS sensitivity depends on several factors

= Factors impacting sensitivity:
P g y =) Optical properties of fiber core materials

= Fiber types X dB
= Cable types Y dB =)  Fiber arrangement, geometry, packaging
* Interrogator types  Z dB =>  Optical, electronic hardware systems

System Performance: (X+Y+Z ) dB

= Yields:
= Higher signal-to-noise ratio
= Wider sensor pattern
= Farther monitoring distances
= Strain components
= Additional physical effects
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The Infrastructure Monitoring Challenge

How well are we coupled ?

Trains
moving

Transport Infrastructure Monitoring

Primary goal: monitor trains
Opportunity: monitor earthquake waves and local soil response

(LN suzpz) s

Www. optasense.com

Distance 170km

Earthquake Strain Waveforms

*
Fault Mechanism
17/02/2018
=0 orrival
On different arrival paths
- P-arrival

Strain Seismograms:

Bandpassed to 3 Hz-150 Hz
Variable local strain response
Scattering off near-surface objects
Diffractions, Reflections,

Mode conversion

- S-arrival

4= S_arrival
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Active DAS Source Gather and MASW Dispersion Plot

DAS recording of small active sources along a 340m stretch of train tracks

Acquisition and data analysis in
cooperation with British Geological
Survey and Network Rail.

Dense DAS recording allows multi-
channel analysis of surface waves
(MASW) for energy traveling in line
with the fiber.

Ambient Noise Interferometric DAS Gathers and Dispersion

DAS recording of 30 minutes of ambient noise along a 340m stretch of train tracks

Passive recordings operationally very
efficient and safe.

Interferometry shows similar features
as active source gather

SNR can be built up by stacking over
hours/days.

Dense DAS recording allows multi-
channel analysis of surface waves
(MASW) for energy traveling in line
with the fiber.
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Lateral Velocity Variation Estimation from MASW

5 Hz dispersion curves vs shot
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The Stanford Fiber-optic Seismic Observatory

DAS Array has been continuously operating since Sept 1, 2016 as part of Prof Biondi’s Research Group

Array Layout Visualized

—PVC or similar
10-15[

cm ~fibre optic

cable

——soil

Area + Campus mix of
Map materials
at surface
12m ——soil
/concrete

DAS Array Parameters
2 x 2.45 km fiber-optic cable
Cable + Conduits in Manhole 2x305 channels
(fiber coupled by gravity only) * 8 msensor spacing
7 m gauge length
Continuous recording
0-25 (50) Hz recording (SEGY)

DAS (ODH 3.1)
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Ambient Noise Time-Lapse Monitoring Rayleigh Waves

Virtual source gathers: interferometry turns “noise” into signal - analyze changes over time

October December March

November

September

January February

April

Stanford Fiber-
optic Array
recording
continuously
allows for long-
term time-lapse
monitoring.

547

time lag (seconds)
2.2
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Lots of rain in these months, especially this year.

From Eileen Martin, Ph.D. Thesis, 2018,
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Southern California Earthquake Monitoring

Infrastructure fiber-optic cables along Highways turned into seismic sensor arrays

Cars, trucks
on highway
opposite traffid

Earthquake

7.1 Earthquake\with 80,00 aftershocks Aftershock

Rapidly Deployment of DAS systems

On-demand seismic arrays
Self-contained (Currently 3 months continuous recording)
DAS Systems

Permanent Infrastructure Monitoring

Early-Warning Systems
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Network cables turned into DAS Sensors




Earthquake Recording on Network Cables Along Highway 395

Excellent data quality, even with on-going traffic
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Aftershocks provide near-surface and soil condition information
Derive Vs30 velocity and other models; improve seismic risk maps
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DAS monitoring of landslide-hazard and slope stability, micro-seismicity,

tremors
Prof J. Dettmer, U of Calgary, Research Collaboration

Multi-disciplinary collaboration
between academia and industry

www.optasense.com Courtesy Prof. Dettmer, U Calgary
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System installation and final fiber-cable layout

Fiber cable trenched both on glacier and on rock face

www.optasense.com Courtesy Prof. Dettmer, U Calgary
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Mt Meager DAS Monitoring

unattended, since September 18, continuous life signs transmitted

Initial Data promising

DAS Sensing for pre-cursory strain changes

before catastrophic failures occur in Land-slide Slope Stability and Geohazard applications

= For optimal transfer of strain from soil, rock, ice:
= Utilize tight-buffered fiber-optic cable
» Trench shallow fiber-optic cable

= Acquires densely sampled strain wave field to capture near static
behavior up to high frequencies (kHz)

= Allows analysis of low-frequency strain evolution and microseismic
activity, tremors, ambient noise time-lapse imaging

» Traditional near-surface imaging analyses or machine-learning algorithms

= Many practical applications ...

22 | www.optasense.com

11



11/12/2019

Enabling Future Sensing Applications

) o = Cities implementing fiber-optic
= Near-surface investigations master plans

= Geotechnical, Engineering
= Condition Monitoring

= Smart Cities
» Smart Buildings
= Smart Infrastructure

... add fiber as part of the design !
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Thank You ! Questions ?

Martin.Karrenbach@optasense.com
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