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Abstract
Geophysics aims to image subsurface geologic structure and 

identify different geologic units. While the former has dominated 
the interpretation of applied geophysical data, the latter has 
received much less attention. This appears to have persisted despite 
applications such as those in mineral exploration that inherently 
rely on the inference of geologic units from geophysical and 
geologic observations. In practice, such activities are routinely 
carried out in a qualitative manner. Thus, it is meaningful to 
examine this aspect and to develop a system of quantitative 
approaches to identify different geologic units. The development 
of geophysical inversions in the last three decades makes such 
interpretation tools possible. We refer to this newly emerging 
direction as geology differentiation and the resultant representation 
of geology model as a quasi-geology model. In this article, we 
will provide an overview of the historical background of geology 
differentiation and the current developments based on physical 
property inversions of geophysical data sets. We argue that inte-
grating multiple physical property models to differentiate and 
characterize geologic units and work with the derived quasi-
geology model may lead to a step change in maximizing the value 
of geophysical inversions.

Background
Beginning in the early 1990s, generalized inversions have trans-

formed geophysical data interpretation in mineral exploration. The 
development moved interpretation from anomaly “bump hunting” 
in the data domain to 2D and 3D imaging in the model domain 
based on the inverted physical properties. Many successful examples 
have been presented in the literature. The decades of development 
of geophysical inversions have greatly expanded our ability to invert 
many different types of geophysical data and dramatically enhanced 
the capability of the algorithms in tackling ever increasing sizes of 
the data and model. New acquisition technology and newer data sets 
(e.g., distributed data acquisition with high-power transmitters in 
direct current resistivity and induced polarization [DC/IP], airborne 
gravity gradiometry, and z-axis tipper electromagnetics [ZTEM]) 
have greatly increased the depth of investigation of these data sets 
in the form of imaged physical property distribution at depth and 
the associated resolutions. Tremendous advances in inversion algo-
rithms and software have occurred in the past two decades. Virtually 
all data types typically used in mineral exploration can now be 
inverted, and a comprehensive set of inversion tools are available.
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Given the numerous successes of geophysical inversions and 
their routine use in the interpretation of exploration geophysical 
data, we might have expected a significant increase in the number 
of discoveries. However, such an outcome has not been borne out 
by statistics. Figure 1 shows a chart by Schodde (2017), which is 
well known in the mining community. One feature that has drawn 
much attention is the decreasing number of discoveries in the 
2007–2012 period when the exploration expenditure was increas-
ing. What is interesting but has not drawn attention is the fol-
lowing observation.

Around 1995 was when the widespread use of geophysical 
inversions started. One of the authors of this article is fortunate 
to be a part of that effort while working with the University of 
British Columbia Geophysical Inversion Facility (UBC-GIF), 
which contributed to many inversion algorithms and associated 
software. It could be stated that either the use of these inversion 
methods has not significantly increased the discovery rate or the 
increase has not been sufficient to offset other negative factors. 
Therefore, besides asking the common question of what the 
challenges for new discoveries are, one could also ask a different 
question from the point of view of geophysics. Why has quantita-
tive interpretation based on geophysical inversions not made a 
clear difference in discovery rate? This question becomes even 
more important when considering the multitude of advances in 
geophysical instrumentation and field acquisition methods, 
which clearly have led to more and higher quality data necessary 
for geophysical inversions.
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Geology differentiation: A new frontier in quantitative 
geophysical interpretation in mineral exploration

Figure 1. Number of discoveries in mineral exploration since 1950 presented by 
Schodde (2017). The year 1995 approximately marks when the widespread use 
of 2D and 3D geophysical inversions started. It appears that the introduction of 
geophysical inversions as a quantitative tool did not significantly change the 
discovery rate. (Modified from Schodde, 2017.)
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To understand why, it is worth asking another question. Have 
we tapped into the full potential of geophysical inversions? If one 
agrees that geophysical inversion has not fundamentally changed 
the discovery rate, the answer would be no. Such an answer then 
invites a logical question. What might be the next step change 
of data interpretation beyond geophysical inversions?

We observe that the dominant interpretation approach used 
for gravity, magnetic, DC/IP, and electromagnetic data through 
inversions is based on the inverted physical properties. These 
physical property models tend to be used in a qualitative interpreta-
tion manner similar to that of bump hunting — where the changes 
in the physical properties contribute to the structural geology 
interpretation. Thus, these interpretation methods essentially use 
the corresponding physical properties as proxies of geology. 
Although geophysicists are familiar with such models and inter-
pretations while communicating with geologists, one extra step 
is needed by geologists to transform these interpretations into 
rock types and ore-hosting models to obtain useful insights that 
can guide future decision making and exploration activities. 
Current inversion algorithms are effective in imaging these proxies 
but may not be sufficiently effective in imaging geology as defined 
by lithologies, alteration zones, or different mineralization zones. 
However, geophysics is meant to image and characterize geology; 
focusing on the proxies alone is insufficient. Therefore, it is high 
time to move the focus back to geology.

In fact, such approaches have been used extensively in other 
disciplines. For example, in medical diagnostics, a magnetic reso-
nance image (MRI) of a human brain is routinely segmented and 
classified into different categories such as white matter, gray 
matter, and spinal fluids, which provides more useful information 
to doctors for diagnosis than the raw MRI images. In hyperspectral 
imaging of minerals, multiple airborne images from different 
spectral bands are fused into one map that identifies the existence 
of various minerals and their spatial distribution. With the avail-
ability of advanced geophysical inversion algorithms, we are now 
in the position to do the same with multiple physical properties 
recovered from geophysical data sets to image geology.

Geology differentiation
We formally term this approach of mapping different geologic 

units using multiple physical property models obtained from geo-
physical inversions as “geology differentiation.” It consists of two 
parts: differentiation and characterization. The former seeks to 
ascertain if multiple anomalous regions in inverted physical property 
models belong to the same type or different geologic units, whereas 
the latter identifies what geologic unit or type a given model region 
corresponds to, such as different lithology, alteration types, or 
mineralization zones. The ultimate goal is to produce a representation 
of geology from inverted physical properties.

There has been a long line of such research in exploration 
geophysics, dating back to Garland (1951) and Kanasewich and 
Agarwal (1970), in the data domain using gravity and magnetic 
data. Dransfield et al. (1994) map pseudolithology using airborne 
gravity gradiometry and magnetic data.

With widespread use of 3D inversion algorithms, researchers 
have investigated geology differentiation in the model domain based 
on physical properties recovered from inverting geophysical data 

sets. For example, Williams et al. (2004) use invert density and 
magnetic susceptibility values to approximate the relative abundance 
of hematite and magnetite as a predictor of two types of alteration 
in the Olympic Cu-Au province, South Australia, and produce a 
3D prospectivity map that correlates well with known major depos-
its. The study covers an area of 150 km on a side. Kowalczyk et al. 
(2010) use regional-scale gravity and magnetic inversions to produce 
a 3D pseudolithology map for the entire Quesnel terrane in British 
Columbia. This regional study spans approximately 1000 km along 
the terrane and produces 19 different lithology classes.

These seminal works have focused on regional-scale studies 
and emphasized geology differentiation. The results have clearly 
demonstrated the value of integrating multiple geophysical 
inversions and the potential for deriving value-added and more 
specific geologic information by combining different physical 
property models.

Can we use such an approach on deposit scales? Can specific 
lithology or geologic units be identified? Our recent work has 
demonstrated that both are feasible. The work by UBC-GIF has 
also shown that sufficient information exists in physical property 
models on the deposit scale (Devriese et al., 2017; Fournier et al., 
2017; Kang et al., 2017) such that different zones associated with 
a diamondiferous kimberlite can be differentiated.

We present three case studies in the following as illustrations. 
The first two assume separate inversions of different geophysical 
data sets, and the third is based on a formal joint inversion. In each 
case, we combine physical property models obtained through geo-
physical inversion and different levels of prior geologic information 
to obtain a quasi-geology model, which can be interpreted in much 
the same way as a traditional geology model constructed from direct 
observables such as outcrops and drill hole information.

Case 1: Lithology characterization in iron ore exploration. For 
cases in which specific geologic units present in the subsurface 
are known and we simply seek to identify where they occur, we 
can utilize prior knowledge in conjunction with geophysical 
models to map physical properties to the lithology(s) of interest. 
In this example from iron ore exploration in the Quadrilátero 
Ferrífero in Brazil, airborne gravity gradient and magnetic data 
are used to characterize the spatial distribution of known types 
of iron formation and other lithologic units based on limited prior 
information (Martinez and Li, 2015). The deposit in question 
resides in the Minas Series, which is an iron-bearing formation 
composed of Precambrian metasedimentary rocks. Within the 
Minas Series, the Cauê Itabirite (banded-iron formation) hosts 
most of the economic iron mineralization. The prior knowledge 
is in the form of a geologic cross section created from borehole 
information, and that is used to link recovered physical property 
values in the inverted geophysical models to likely lithologies. 
The objective is to identify the spatial distribution of hematite 
and different types of itabirite.

The gravity gradient and magnetic data are separately inverted 
to obtain 3D density and susceptibility models. The iron ore forma-
tion is readily differentiated from the dolomitic and quartz-rich 
country rock by a distinctly high-density contrast that produces 
well-defined anomalies in airborne gravity gradiometry data. The 
high-grade hematite iron ores are associated with low and moderate 
susceptibilities, making magnetic data useful in distinguishing 
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between iron formation lithologies. The susceptibility of the iron 
ore in this area is generally low for hard compact hematite, slightly 
higher for that of soft porous hematite, and higher still for that 
of economic itabirite.

By matching the geologic cross section (Figure 2a) with the 
spatially coincident density (Figure 2b) 
and susceptibility cross section 
(Figure 2c), the physical property ranges 
associated with each lithology are iden-
tified and subsequently applied to the 
full 3D physical property value ranges 
in a crossplot (Figure 3a). From the 
crossplot, ranges of the physical proper-
ties associated with specific lithologies 
can be mapped across the physical 
property space based on which 3D 
lithology model in spatial domain is 
obtained. A depth slice through the 3D 
lithology model is shown in Figure 3b 
where the spatial distribution of iron 
formation can be identified by the 
potential lithology type (hematite, fri-
able itabirite, and compact itabirite).

Case 2: Mapping mineralized zones 
at an IOCG deposit. In many scenarios, 
such as greenfield exploration, we may 
not have sufficient prior knowledge to 
carry out the end-member analysis as 
in the preceding example. Different 
approaches are then required. We use 
the exploration for iron-oxide-copper-
gold (IOCG) deposits in Carajás, 
Brazil, as an example to illustrate the 
characterization of different mineral-
ized zones in the absence of prior 
information on the relationship 
between recovered physical properties 
and geologic units.

The Cristalino copper-gold deposit 
is an IOCG deposit located in northern 
Brazil and hosted by a splay of a deep 
crustal fault. The splay fault acted as a 
conduit for hydrothermal fluids. The 
copper and gold ore was formed by 
hydrothermal alteration of a volcano-
sedimentary sequence consisting of 
mafic and felsic volcanic rocks interlay-
ered with iron formation (which con-
tains magnetite) and intruded by a 
younger gabbro dike. The main ore 
mineral is chalcopyrite.

Melo et al. (2017) develop and 
apply to Cristalino a geology differen-
tiation by combining inverted physical 
property models, sparse geologic data, 
and textbook physical property values 
for different minerals. The first step of 

the method is constructing a conceptual crossplot (Figure 4a) 
with different groupings of physical property values (e.g., electri-
cal conductivity and magnetic susceptibility) corresponding to 
distinct geologic units. This crossplot integrates information 
from drilling, published reference values for minerals of interest 

Figure 2. (a) Geologic cross section constructed based on drill hole data. (b) Corresponding cross section through 
the density model obtained from 3D inversion of gravity gradient data. (c) Corresponding cross section through the 
susceptibility model obtained from 3D inversion of residual magnetic data.

Figure 3. (a) Crossplot of the density and susceptibility values estimated from inversions of gravity gradient and 
magnetic data color coded by the assigned lithologic units. (b) Depth slice through the 3D lithologic model at an 
elevation of 1150 m showing the distribution of assigned lithologic units by linking known geology cross section to 
geophysical models.
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(i.e., chalcopyrite and magnetite), sparse geologic information, 
and a geologist’s understanding of the exploration target. The 
grouping patterns established in the first step then apply to the 
crossplot of physical property values estimated from separate 
inversion of magnetic and DC data (Figure 4b). The classification 
result in Figure 4b, when summarized in spatial domain as 
shown in Figure 5b, is highly similar to the geologic section in 
Figure 5a despite the fact that no direct information from the 

section was used. Subsequent work has also extended the dif-
ferentiation method to 3D and multiple physical property models 
and achieved similar results. The differentiation result from this 
study is also interesting in two aspects. First, the differentiation 
has clearly worked in a problem covering a spatial extent of 1 km 
and the differentiated zones are on the order of 200 m. Secondly, 
the characterized units are primarily of different mineral assem-
blages rather than lithology.

Figure 5. (a) Geologic cross section through the Cristalino copper deposit superimposed with the drill hole traces and chalcopyrite concentrations of the hydrothermal 
zone hosted by the volcanic and sedimentary rocks (modified from Vale, 2004). (b) Geology characterization overlain by the geologic section in (a) showing the high 
spatial correspondence between the identified ore class and the high concentration of chalcopyrite from petrophysical measurements.

Figure 4. (a) Conceptual scatterplot of the electrical conductivity and magnetic susceptibility values for magnetite and chalcopyrite (based on Telford et al., 1990) 
showing the expected grouping patterns of the ore unit and the iron formation as well as the relative positioning of different units. (b) Differentiation and characterization 
results on top of the scatterplot of estimated susceptibility and conductivity values from the 2D inversions. Each black point corresponds to one pair of susceptibility and 
conductivity values at one model cell overlain by the classification (indicated by the polygons of different colors) based on the conceptual grouping patterns established 
in (a) and natural groupings in the inverted physical property values. Class 1 is associated with the iron formation, class 2 with copper ore, class 3 with host rock I, and 
class 4 with host rock II.
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Case 3: Ore body mapping through joint inversions at Heath 
Steele Stratmat. With the advancement of joint inversion in 
exploration applications, the quality of inverted physical property 
models is expected to improve significantly, rendering improved 
geology differentiation results attainable. In the cases where 
prior petrophysical data are available, multiple geophysical and 
petrophysical data can be constructively integrated at the inver-
sion stage, leading to improved physical property models that 
are better suited for geology differentiation. We present such 
an example.

The Stratmat Main Zone, located south of the Bathurst 
Mining Camp in northeast New Brunswick, Canada, hosts a 
volcanic massive sulfide (VMS) deposit. The diamond drill holes 
reveal four major lithologic units in this area: massive sulfides, 
volcanic (crystal, felsic, and lapilli) tuffs, metasedimentary rocks, 
and mafic intrusions (diabase dikes and gabbros). Their density 
and magnetic susceptibility variations give rise to distinct gravity 
and magnetic signatures. From the separately inverted density 
and susceptibility models, one can readily identify the location 
of the VMS deposit. However, those separately inverted models 
do not provide much useful information on the distribution of 
the various lithological units. A better understanding of the 
VMS system may be developed if the distribution of the different 
lithological units can be better imaged. Sun and Li (2015) apply 
the joint clustering inversion method (Sun and Li, 2017), combine 
the gravity and magnetic data with the petrophysical data, and 
develop a 3D pseudolithology model that shows the spatial 
distribution of the different lithological units. This 3D pseudo-
lithology model may provide geologists with new insights into 
how the VMS system was formed and how different chemical 
and alteration processes led to the formations of the copper-
lead-zinc deposit. This knowledge will be helpful in guiding 
future exploration activities for similar targets.

Beginning with limited and overly simplified petrophysical 
data, Sun and Li (2015) iteratively develop new hypotheses about 
the petrophysical relationships (i.e., grouping patterns) between 
density and susceptibility values for different lithological units 

and test them through the earlier mentioned joint clustering 
inversion. The final hypothesis arrived at is that the density and 
susceptibility values, when crossplotted against each other, 
contain three circular and two elliptical clusters, with each 
cluster corresponding to one unique lithological unit. The jointly 
inverted physical property values in Figure 6 exhibit well-defined 
clustering features at approximately the expected locations. Each 
cluster represents a group of similar or correlated density and 
susceptibility values and, therefore, can be interpreted as one 
unique lithological unit. We note that, for the previous two 
approaches, grouping patterns for each geologic unit are estab-
lished based on either an available geologic cross section (case 1) 
or published textbook reference values (case 2), whereas in this 
case, joint inversion directly outputs grouping patterns for 
each unit.

Lithology differentiation is accomplished by assigning a unique 
integer categorical number (i.e., 1, 2, 3, 4) to each cluster in 
Figure 6 and then visualizing in 3D spatial domain in the form 
of a 3D pseudolithology model as shown in Figure 7. The 3D 
pseudolithology map displays the spatial distribution of each 
lithological unit and contains useful information for geologists 
to better understand the geologic and mineralogical processes 
that resulted in the formation of VMS deposits.

Summary
From these examples and the earlier mentioned works by 

other authors, a clear pattern is emerging. The general approach 
of geology differentiation using multiple physical property models 
has shown promising results on a wide range of scales from 1 km 
covering a deposit to 1000 km covering an entire mining terrane. 
The geologic units mapped through the differentiation approach 
include identified lithology types, zones of mineralization, and 
different types of alteration.

A surprisingly encouraging observation is that separately 
inverted models, when examined jointly, contain sufficient 
information for this approach to produce meaningful results in 
many cases. This bodes well for the practical applications of 

Figure 6. The crossplot of the jointly inverted density and susceptibility values in 
blue and the hypothesized average physical property values for each lithological 
unit in red. The green circles and ellipses represent the identified clusters (or 
equivalent lithological units) among the inverted density and susceptibility values.

Figure 7. The 3D pseudolithology model derived from the joint inversion of 
gravity and magnetic data. Each color, assigned an integer categorical number, 
represents one unique lithological unit. The background corresponding to 
sediments and felsic rocks is removed. The identified magnetic sulfide marked in 
red agrees well with drill hole information.
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geology differentiation since it can be readily applied in active 
exploration projects using the variety of inversion tools that are 
already available. Furthermore, we point out that because of the 
better defined grouping features directly resulting from joint 
inversion and the consequent ease of performing geology dif-
ferentiation, joint inversion holds great promise for further 
advancing and automating geology differentiation. Considering 
the fact that joint inversion methods, algorithms, and software 
are still to be developed and tested, we remark that geology 
differentiation still has much time to be further improved by 
including joint inversion in the workflow.

We summarize the general workflow for geology differentia-
tion in Figure 8. The workflow starts with multiple types of 
geophysical data followed by geophysical inversion (either separate 
inversions or a single joint inversion) and reconstructs a set of 
physical property models. These estimated physical property values 
are then summarized in a scatterplot. A critical component of 
geology differentiation is to establish the expected grouping 
patterns of physical property values for all the geologic units by 
combining information from existing geologic cross sections, 
drilling data, physical property values from laboratory measure-
ments, and literature. The established grouping patterns then 
apply directly to the scatterplot obtained from geophysical inver-
sions. The identified groups (or clusters) in the scatterplot represent 
the geology differentiation results that can be further visualized 
in 3D spatial domain for subsequent knowledge discovery and 
insight development. We reiterate that, in this workflow, geophysi-
cal inversion only serves as a tool to convert geophysical data to 
physical property models, and the end product of the workflow 
is a 3D quasi-geology model.

Conclusions
Data image-based interpretation was dominated by “anomaly 

bump hunting” or a similar qualitative approach in the early state 
of exploration geophysics. Inversions have increased the quantita-
tive level significantly and changed the paradigm from the data 
domain to model domain of physical properties, but a significant 
portion of the interpretation appears to have remained in the 
mode of bump hunting by focusing on anomalous physical property 
zones. Combining multiple physical property models, however, 
may enable us to differentiate between lithologic units, alteration 

Figure 8. A general flowchart for geology differentiation.

types, and mineralization zones, or even identify them. We believe 
that such an integrated interpretation is the next step change in 
quantitative interpretation of geophysical data.

We have the requisite inversion tools, and inversion of different 
geophysical data sets is also a routine part of data interpretation. 
Thus, we have the essential components to perform geology 
differentiation on a routine basis. To accomplish this objective, 
we also need supplemental information from petrophysical data-
base, geochemical, and lithochemical data to establish reasonable 
grouping patterns among the inverted physical property values 
so they can be mapped into different geology units.

Furthermore, what is required is a mindset that may be 
described by the following adage: “No one cares about geophys-
ics unless it can solve geology problems.” Thus, the focus should 
be on geology and not necessarily on geophysics by itself. 
Adopting this mindset logically requires geophysicists in 
research and practice to think and act as geoscientists with 
some understanding of the geologic and mineral systems in 
which we explore, of mineralogy, and of geochemistry. 
Consequently, we cannot focus primarily on geophysical meth-
ods in a semivacuum setting.

Returning to the question of why the advances and widespread 
use of geophysical inversions have not apparently contributed 
significantly to discoveries, we surmise that the reason is the use 
of these algorithms has been confined as geophysical tools instead 
of ultimate geologic tools. To advance to the next stage, it has 
long been recognized that we must produce geologic models. 
Specifically, these geologic models include 3D maps of alterations 
types, lithologies, or zones of different mineral assemblages. When 
we geophysicists can predict and map geology in such manners, 
we may be able to affect another game change in the landscape 
of mineral exploration and increase the discovery rate in the 
coming decades. Thus, geology differentiation is a new frontier.

The change will be in the way geophysical technology is 
used, but more importantly, the change should be in our mindset. 
As a profession, geophysicists also need to think and act in this 
way in order to stay competitive and highly relevant. That is, we 
must adopt a geoscientists’ mindset. Otherwise, our profession 
may risk becoming relegated to the equivalent of imaging tech-
nologists and geophysicists becoming the ultimate technicians. 
Therefore, geophysicists must go beyond geophysics. 
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